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The present paper describes the analyses of the ATHLET simulations of the next loss-of-coolant accident 

(LOCA) sequence, utilizing a generic VVER-1200 input deck: 

1. Beyond design basis accident (BDBA): LOCA in the cold leg (close to the RPV nozzle), diameter 250 

mm with failure of LPI and HPI systems. 
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1. Introduction 

In the investigation of violations of the expected normal operation and 

design basis accident (DBA) should use relevant computer codes for 

thermohydraulics. In many cases the safety parameters such as the temperature 

of the fuel and cladding and peak linear heat capacity cannot be measured 

directly and their values cannot be represented by the reactor operator. Therefore 

it should be estimated of the reactor core states by special computer codes in 

order to set the values of the parameters in the operating procedures. 

Owing to the absence complete empirical basis possible analysis of 

nonstationary normal and accident processes in the reactor facility is a 

calculation analysis which has a theoretical prediction character and is not the 

generalization of empirical data. 

Thermohydrodynamic (thermohydraulic) codes are one of the groups of 

computer programs that are required for justification of a nuclear facility safety 

analysis  and include subgroup "system thermohydraulic codes". Programs of 

this subgroup are usually divided into codes of the conservative and realistic 

estimates. The second type of code called best estimate codes. This type does 

not contain specific models of individual plant elements and processes occurring 

in them, based on empirical data. Therefore best estimate codes are sufficiently 

accurate and universal, they are applicable to the whole class research facilities. 

System thermohydraulic codes are software systems, designed to simulate 

the parameters of the coolant throughout the nuclear power plant. In case of 

abnormal mode initiation and especially of emergency modes the coolant phase 

composition changes. As in the coolant can be realized various flow regimes and 

heat transfer for the correct description of such processes to be modeled vapor-

liquid mixture in the approximation separate phase flow. System codes in which 

the coolant is described in the mentioned approximation, were scalled realistic 

or best estimate codes. 
___________ 
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One of the representatives of this type of codes is a software package 

ATHLET which is based on modern deterministic models. 

The thermal-hydraulic computer code ATHLET (Analysis of the 

THermal-hydraulics of LEaks and Transients) is being developed by the 

Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) for the analysis of 

anticipated and abnormal plant transients, small and intermediate leaks as well 

as large breaks in light water reactors. ATHLET can be applied for all types of 

design base and beyond design base incidents and accidents without core 

damage in light water reactors, like PWR, BWR, VVER, and RBMK. 

 

2. Beyond design basis accident (BDBA) 

The loss-of-coolant accident (LOCA) starts at time 0 s, when the leakage 

of DN 250 mm is opened (Figure 2.1). Simultaneously, the level of the coolant 

in the pressurizer begins to drop (Figure 2.2). Rapid reduction of pressure in the 

primary circuit of the reactor installation (Figure 2.3) begins and after about 

0.5 s the pressure above the reactor core falls below 14.2 MPa, which is a 

condition for the actuation of the SCRAM signal. 

 

 

Figure 2.1 Leak opening 
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Figure 2.2 Coolant level in Pressurizer 

 

 

Figure 2.3 Pressure above the core 
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When the SCRAM is activated, the control rods are immediately inserted 

into the active zone (the time of fall of the rods is 1.5 to 4 s) and the main 

circulation pumps are disconnected (Figure 2.4). Further procedures which 

would be performed in a real VVER-1200 plant are not included in this 

simulation. The neutron power of the reactor starts to decrease rapidly (Figure 

2.5). With a delay of 4 seconds, after the full introduction of the control rods 

into the active zone, the turbine trip signal is given and the turbine mass flow 

coasts down linearly within 10 s (Figure 2.6) – this behavior was specified in the 

ATHLET input deck. 

 

 

Figure 2.4 Main circulation pump head 
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Figure 2.5 Total power of the core 

 

 

Figure 2.6 Turbine shutdown 

 

0 ,0 E + 0 0

5 ,0 E + 0 8

1 ,0 E + 0 9

1 ,5 E + 0 9

2 ,0 E + 0 9

2 ,5 E + 0 9

3 ,0 E + 0 9

3 ,5 E + 0 9

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0 3 2 3 4 3 6 3 8 4 0

P
o

w
e

r,
 W

time, s

ROD1 0DKINETICS NODE1 TOTNPOW

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30

R
e

la
ti

v
e

 t
u

rb
in

e
 m

a
s

s
 f

lo
w

, 
%

/1
0

0

time, s

GCSM TURBINE STAGE1 A.V-TURB



V.A. Shaparau and E.G. Vashetko 
 

294 
 

As the main steam valve of the turbine closes, steam pressure in the steam 

generators begins to increase (Figure 2.7). Since the signal "fast turbine 

unloading" is active, the BRU-K valve opens when a pressure of 7.4 MPa is 

reached, dumping surpluses of the produced steam into the turbine condenser 

(Figure 2.8). The valve opens at 553 second and closes at 557 seconds when the 

pressure sinks below 6.92 MPa. As can be seen in Figure 2.8, the mass flow 

through the BRU-K valve is controlled around a maximum discharge rate of 

50 kg/s per valve and remains sub-critical during the discharge period. Due to 

the fact that the pressure in the steam generators does not reach the value of 

7.8 MPa (the maximum pressure in Figure 2.8 is 7.38 MPa), the BRU-A valve 

does not open. 

 

Figure 2.7 Pressure in steam generators 
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Figure 2.8 BRU-A and BRU-K operation 

red curve: BRU-K mass flow rate 

blue curve: BRU-A mass flow rate 

green curve: critical discharge rate of BRU-K (= maximum possible 

mass flow through the valve) 
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(ECCS) does not work, the process of core overheating and boiling-out of the 

coolant from the reactor begins. 

 

 

Figure 2.9 Hydro-accumulator mass flow 
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Figure 2.10 Hydro-accumulator levels (absolute height values) 
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Figure 2.11 Coolant flow through core 

 

 

Figure 2.12 U-tubes liquid (green) and vapor (red) mass flow 
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Figure 2.13 Void fraction in the three groups of u-tubes 
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Figure 2.14 The coolant flow at the top of the core 

 

 
Figure 2.15 The coolant temperature at the top of the core 
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3. Conclusion 

The analyse and description of the ATHLET simulation beyond design 

basis accident (BDBA) of a LOCA in the cold leg (close to the RPV nozzle), 

diameter 250 mm with failure of LPI and HPI systems was presented. 

In the formation of the initial data set, the stationary initial state of the 

VVER-1200 with increased initial power (104%) was used. To create this state, 

the design parameters of the operation of individual systems integrated into the 

general model of the power unit were set, and the stationary mode was 

calculated to stabilize the parameters. After establishing a stable stationary state, 

this state was fixed and used as the initial one for calculations of the transient 

processes. 

It was shown that  

 In the case of BDBA, the core draining starts and the steam temperature 

rises. Accordingly, the temperature of the fuel begins to increase rapidly 

at a certain time in the BDBA case (which will lead to its destruction). 

 The region slightly above average in the heated part of the core is the 

hottest.  

 The melting point of the cladding of a fuel rod is reached at 1850 seconds 

since the start of the accident. 

The input deck created during the execution of this project is sufficient to 

complete the assigned task. But the analysis of other accidents requires its 

modernization and greater detailing of the simulated equipment. This will be 

possible in the course of other projects by people with sufficient experience 

working with ATHLET code. 
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